skip to main content


Search for: All records

Creators/Authors contains: "Mozer, F. S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The evolution of plasma entropy and the process of plasma energy redistribution at the collisionless plasma shock front are evaluated based on the high temporal resolution data from the four Magnetospheric Multiscale spacecraft during the crossing of the terrestrial bow shock. The ion distribution function has been separated into the populations with different characteristic behaviors in the vicinity of the shock: the upstream core population, the reflected ions, the gyrating ions, the ions trapped in the vicinity of the shock, and the downstream core population. The values of ion and electron moments (density, bulk velocity, and temperature) have been determined separately for these populations. It is shown that the solar wind core population bulk velocity slows down mainly in the ramp with the electrostatic potential increase but not in the foot region as it was supposed. The reflected ion population determines the foot region properties, so the proton temperature peak in the foot region is an effect of the relative motion of the different ion populations, rather than an actual increase in the thermal speed of any of the ion population. The ion entropy evaluated showed a significant increase across the shock: the enhancement of the ion entropy occurs in the foot of the shock front and at the ramp, where the reflected ions are emerging in addition to the upstream solar wind ions, the anisotropy growing to generate the bursts of ion-scale electrostatic waves. The entropy of electrons across the shock does not show a significant change: electron heating goes almost adiabatically.

     
    more » « less
  2. Abstract

    We present the first results study of the effects of the powerful gamma-ray burst GRB 221009A that occurred on 2022 October 9, and was serendipitously recorded by electron and proton detectors on board the four spacecraft of the NASA THEMIS mission. Long-duration gamma-ray bursts (GRBs) are powerful cosmic explosions, signaling the death of massive stars, and, among them, GRB 221009A is so far the brightest burst ever observed due to its enormous energy (Eγiso≈ 1055erg) and proximity (the redshift is z ≈ 0.1505). The THEMIS mission launched in 2008 was designed to study the plasma processes in the Earth’s magnetosphere and the solar wind. The particle flux measurements from the two inner magnetosphere THEMIS probes, THA and THE, and two outer probes (renamed ARTEMIS after 2010), THB and THC, orbiting the Moon captured the dynamics of GRB 221009A with a high time resolution of 4 (up to 8) measurements per second. This allowed us to resolve the fine structure of the GRB and determine the temporal scales of the two main bursts’ spiky structure, complementing the results from gamma-ray space telescopes and detectors.

     
    more » « less
  3. Abstract

    Observations of the young solar wind by the Parker Solar Probe (PSP) mission reveal the existence of intense plasma wave bursts with frequencies between 0.05 and 0.20fce(tens of hertz up to ∼300 Hz) in the spacecraft frame. The wave bursts are often collocated with inhomogeneities in the solar wind magnetic field, such as local dips in magnitude or sudden directional changes. The observed waves are identified as electromagnetic whistler waves that propagate either sunward, anti-sunward, or in counter-propagating configurations during different burst events. Being generated in the solar wind flow, the waves experience significant Doppler downshift and upshift of wave frequency in the spacecraft frame for sunward and anti-sunward waves, respectively. Their peak amplitudes can be larger than 2 nT, where such values represent up to 10% of the background magnetic field during the interval of study. The amplitude is maximum for propagation parallel to the background magnetic field. We (i) evaluate the properties of these waves by reconstructing their parameters in the plasma frame, (ii) estimate the effective length of the PSP electric field antennas at whistler frequencies, and (iii) discuss the generation mechanism of these waves.

     
    more » « less
  4. Abstract For more than 12 hr beginning on 2021 January 18, continuous narrowband electrostatic emissions were observed on the Parker Solar Probe near 20 solar radii. The observed <1000 Hz frequencies were well below the local ion-plasma frequency. Surprisingly, the emissions consisted of electrostatic wave packets with shock-like envelopes, appearing repetitively at a ∼1.5 Hz rate. This repetitiveness correlated and was in phase with low-frequency electromagnetic fluctuations. The emissions were associated with simultaneously observed ion beams and conditions favorable for ion-acoustic wave excitation, i.e., Te/Ti ∼ 5. Based on this information and on their velocity estimates of about 100 km s −1 , these electrostatic emissions are interpreted as ion-acoustic waves. Their observation demonstrates a new regime of instability and evolution of oblique ion-acoustic waves that have not been reported previously in theory or experiment. 
    more » « less
  5. Abstract

    We present analysis of 17,043 proton kinetic-scale current sheets (CSs) collected over 124 days of Wind spacecraft measurements in the solar wind at 11 samples s−1magnetic field resolution. The CSs have thickness,λ,from a few tens to one thousand kilometers with typical values around 100 km, or within about 0.1–10λpin terms of local proton inertial length,λp. We found that the current density is larger for smaller-scale CSs,J0≈ 6 nAm−2· (λ/100 km)−0.56, but does not statistically exceed a critical value,JA,corresponding to the drift between ions and electrons of local Alvén speed. The observed trend holds in normalized units:J0/JA0.17·(λ/λp)0.51. The CSs are statistically force-free with magnetic shear angle correlated with CS spatial scale:Δθ19°·(λ/λp)0.5. The observed correlations are consistent with local turbulence being the source of proton kinetic-scale CSs in the solar wind, while the mechanisms limiting the current density remain to be understood.

     
    more » « less
  6. Abstract

    We present a data set and properties of 18,785 proton kinetic-scale current sheets collected over 124 days in the solar wind using magnetic field measurements at 1/11 s resolution aboard the Wind spacecraft. We show that all of the current sheets are in the parameter range where reconnection is not suppressed by diamagnetic drift of the X-line. We argue this necessary condition for magnetic reconnection is automatically satisfied due to the geometry of current sheets dictated by their source, which is the local plasma turbulence. The current sheets are shown to be elongated along the background magnetic field and dependence of the current sheet geometry on local plasma beta is revealed. We conclude that reconnection in the solar wind is not likely to be suppressed or controlled by the diamagnetic suppression condition.

     
    more » « less
  7. Abstract The origin of switchbacks in the solar wind is discussed in two classes of theory that differ in the location of the source being either near the transition region near the Sun or in the solar wind itself. The two classes of theory differ in their predictions of the switchback rate (the number of switchbacks observed per hour) as a function of distance from the Sun. To distinguish between these theories, one-hour averages of Parker Solar Probe data were averaged over five orbits to find the following: (1) The hourly averaged switchback rate was independent of distance from the Sun. (2) The average switchback rate increased with solar wind speed. (3) The switchback size perpendicular to the flow increased as R , the distance from the Sun, while the radial size increased as R 2 , resulting in an increasing switchback aspect ratio with distance from the Sun. (4) The hourly averaged and maximum switchback rotation angles did not depend on the solar wind speed or distance from the Sun. These results are consistent with switchback formation in the transition region because their increase of tangential size with radius compensates for the radial falloff of their equatorial density to produce switchback rates that are independent of radial distance. This constant switchback rate is inconsistent with an in situ source. The switchback size and aspect ratio, but not their hourly average or maximum rotation angle, increased with radial distance to 100 solar radii. Additionally, quiet intervals between switchback patches occurred at the lowest solar wind speeds. 
    more » « less
  8. Abstract A major discovery of Parker Solar Probe (PSP) was the presence of large numbers of localized increases in the radial solar wind speed and associated sharp deflections of the magnetic field—switchbacks (SBs). A possible generation mechanism of SBs is through magnetic reconnection between open and closed magnetic flux near the solar surface, termed interchange reconnection, that leads to the ejection of flux ropes (FRs) into the solar wind. Observations also suggest that SBs undergo merging, consistent with an FR picture of these structures. The role of FR merging in controlling the structure of SBs in the solar wind is explored through direct observations, analytic analysis, and numerical simulations. Analytic analysis reveals key features of the structure of FRs and their scaling with heliocentric distance R, which are consistent with observations and demonstrate the critical role of merging in controlling the structure of SBs. FR merging is shown to energetically favor reductions in the strength of the wrapping magnetic field and the elongation of SBs. A further consequence is the resulting dominance of the axial magnetic field within SBs that leads to the observed characteristic sharp rotation of the magnetic field into the axial direction at the SB boundary. Finally, the radial scaling of the SB area in the FR model suggests that the observational probability of SB identification should be insensitive to R , which is consistent with the most recent statistical analysis of SB observations from PSP. 
    more » « less
  9. Abstract

    We present Magnetospheric Multiscale observations of electrostatic double layers in quasi‐perpendicular Earth's bow shock. These double layers have predominantly parallel electric field with amplitudes up to 100 mV/m, spatial widths of 50–700 m, and plasma frame speeds within 100 km/s. The potential drop across a single double layer is 2%–7% of the cross‐shock potential in the de Hoffmann‐Teller frame and occurs over the spatial scale of 10 Debye lengths or one tenth of electron inertial length. Some double layers can have spatial width of 70 Debye lengths and potential drop up to 30% of the cross‐shock potential. The electron temperature variation observed across double layers is roughly consistent with their potential drop. While electron heating in the Earth's bow shock occurs predominantly due to the quasi‐static electric field in the de Hoffmann‐Teller frame, these observations show that electron temperature can also increase across Debye‐scale electrostatic structures.

     
    more » « less
  10. Abstract The Van Allen Probes Electric Fields and Waves (EFW) instrument provided measurements of electric fields and spacecraft floating potentials over a wide dynamic range from DC to 6.5 kHz near the equatorial plane of the inner magnetosphere between 600 km altitude and 5.8 Re geocentric distance from October 2012 to November 2019. The two identical instruments provided data to investigate the quasi-static and low frequency fields that drive large-scale convection, waves induced by interplanetary shock impacts that result in rapid relativistic particle energization, ultra-low frequency (ULF) MHD waves which can drive radial diffusion, and higher frequency wave fields and time domain structures that provide particle pitch angle scattering and energization. In addition, measurements of the spacecraft potential provided a density estimate in cold plasmas ( $<20~\text{eV}$ < 20 eV ) from 10 to $3000~\text{cm}^{-3}$ 3000 cm − 3 . The EFW instrument provided analog electric field signals to EMFISIS for wave analysis, and it received 3d analog signals from the EMFISIS search coil sensors for inclusion in high time resolution waveform data. The electric fields and potentials were measured by current-biased spherical sensors deployed at the end of four 50 m booms in the spacecraft spin plane (spin period $\sim11~\text{sec}$ ∼ 11 sec ) and a pair of stacer booms with a total tip-tip separation of 15 m along the spin axis. Survey waveform measurements at 16 and/or 32 S/sec (with a nominal uncertainty of 0.3 mV/m over the prime mission) were available continuously while burst waveform captures at up to 16,384 S/sec provided high frequency waveforms. This post-mission paper provides the reader with information useful for accessing, understanding and using EFW data. Selected science results are discussed and used to highlight instrument capabilities. Science quantities, data quality and error sources, and analysis routines are documented. 
    more » « less